

THU 13 APR

Uncertainty: Implications for Climate Mitigation Policy

COOK

Wellington, NZ November 29, 2017

Prof. Charles D. Kolstad Stanford University

PRESSURE

2am

Uncertainty is Complex

 "There are known knowns: there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns — the ones we don't know we don't know."

• Famous contemporary philosopher (2003)

Uncertainty: What are we talking about?

- Uncertainty pertains to level of knowledge about problem (parametric or structural)
- **Stochasticity** pertains to shocks—generally unknowable ex ante
 - Eg, coin flip
 - For example, weather: $y_t = \beta x_t + \eta_t$
 - β uncertain parameter; y weather; x climate
 - η_t is unobserved stochastic shock
- Asymmetric Information—concerning actions or types
 - Regulator, firm and emission control costs: regulator generally more poorly informed. Biased or just higher variance?
 - Insurer vs insured (moral hazard and adverse selection): problems for insurability

• Abrupt Change and Irreversibilities

- EG, if Gulf Stream shuts down, we may not be able to back off on emissions a bit to restore it
- Learning is process by which uncertainty is reduced
 - variance can still increase
 - learning about parametric uncertainty slowed by stochasticity
 - Learning occurs at multiple points in process agents, markets, governments

- Uncertainty and risk
 - Some uncertainty quantifiable; some not. Some objective; some subjective; some both.
 - Uncertainty multifaceted: natural science, damage, costs
 - Uncertainty is different from stochasticity
 - Who is uncertain, who learns and does it matter? Scientists? Regulator? Farmer? Big business?

- Uncertainty and risk
 - Some uncertainty quantifiable; some not. Some objective; some subjective; some both.
 - Uncertainty multifaceted: natural science, damage, costs
 - Uncertainty is different from stochasticity
 - Who is uncertain, who learns and does it matter? Scientists? Regulator? Farmer? Big business?
- Fat tails
 - As ΔT increases, damage grows more rapidly than $\pi(\Delta T)$ declines \rightarrow expected damage grows with ΔT

- Uncertainty and risk
 - Some uncertainty quantifiable; some
 - Uncertainty multifaceted: natural scie
 - Uncertainty is different from stochast
 - Who is uncertain, who learns and doe
- Fat tails
 - As ΔT increases, damage grows more
- Risk perception
 - People perceive risks differently, generating paradoxes

- Uncertainty and risk
 - Some uncertainty quantifiable; some not. Some objective; some subjective; some both.
 - Uncertainty multifaceted: natural science, damage, costs
 - Uncertainty is different from stochasticity
 - Who is uncertain, who learns and does it matter? Scientists? Regulator? Farmer? Big business?
- Fat tails
 - As ΔT increases, damage grows more rapidly than $\pi(\Delta T)$ declines \Rightarrow expected damage grows with ΔT
- Risk perception
 - People perceive risks differently, generating paradoxes
- Irreversibilities
 - Some actions are irreversible; uncertainty and learning suggests biasing current action towards precaution

- Uncertainty and risk
 - Some uncertainty quantifiable; some not. Some objective; some subjective; some both.
 - Uncertainty multifaceted: natural science, damage, costs
 - Uncertainty is different from stochasticity
 - Who is uncertain, who learns and does it matter? Scientists? Regulator? Farmer? Big business?
- Fat tails
 - As ΔT increases, damage grows more rapidly than $\pi(\Delta T)$ declines \Rightarrow expected damage grows with ΔT
- Risk perception
 - People perceive risks differently, generating paradoxes
- Irreversibilities
 - Some actions are irreversible; uncertainty and learning suggests biasing current action towards precaution
- Evolution of future technology highly uncertain
 - Endogenous depends on regulatory action adopted
 - Key to costs and damages (though adaptation)

Example of Uncertainty: Past Technological Change

Figure 3 Prices of consumer energy services in the United Kingdom (Index 1700 = 100), in real terms (2000 values), 1700-2010 Source: Fouquet (2011); see online Supplemental material.

Example of Uncertainty: Future Technological Change

(negative costs largely from assumptions on markets and technological change)

V2.1—McKinsey, 2010

V2.1 Global GHG abatement cost curve beyond BAU - 2030

V2.0– McKinsey, 2009

Example of Demand Uncertainty: Energy Demand & prices

2013 EIA IEO

NB: 1 Quad \approx 1.05 x 10¹⁸ joules 1 Quad \approx 0.025 BTOE

Risks & Climate: The Big Picture

- Abrupt Changes
 - Gulf Stream Shutdown, West Antarctic Ice Sheet Loss, Mass Migration
- Risk Increases from continuous climate change
 - Weather events & flood (NB: weather ≠ climate)
 - Commodity (energy, raw materials) shocks
 - Availability
 - Price
 - Wildfires
 - Civil unrest
 - Asset value shocks
 - Product market shifts and shocks
 - Currency risk
 - Bankruptcy (Insuring against flood)

- Risks mostly unrelated to realized climate change
 - Energy prices
 - Agricultural prices
 - Technological change
 - New vehicle technologies
 - Batteries
 - Supply technologies (eg, natural gas)
- Risks related to mitigation policy
 - Technological change and incentives for innovation
 - Energy markets
 - Renewable supply (solar and wind)

Who makes decisions about climate and uncertainty?

- Private decisions:
 - How to adapt to expected changes in climate?
 - How to exploit business opportunities generated by changes in climate
 - How to develop skills in demand in world of changed climate?
- Public decisions:
 - How to manage emissions and mitigation to meet global commitments?
 - How to incentivize private agents to manage their own risk?
 - How to structure domestic non-climate policies (eg, ag policies) to better deal with risk of climate changes?
 - How to harden domestic infrastructure to deal with risks?
 - How to streamline private insurance markets to better handle climate risk?
 - Opportunities to be global leader in specific areas?

Individual decisions: Ways of Managing Risk

- Insurance markets (good for risk, not uncertainty)
 - Some risks insurable (require risk pooling)
 - Fire risk, Health risk
 - Insurance provides signal of risk (through price)
 - Some risks difficult to insure: flooding
- Financial Instruments
 - Options on price risk
 - Weather derivatives
 - Catastrophe bonds
 - Pay off in certain well defined states of the world
 - Eg, Pay if Category 5 hurricane hits downtown New Orleans next year pays \$1
 - Both sides of market involved
 - Risk pooling not necessary
 - Allows hedging of risk but doesn't eliminate damage from change

- Information markets
 - Prediction markets efficient provision of information
- Real Options
 - Insurance and derivatives do not undo damage, only hedge risk
 - Mitigation and adaptation reduce damage and vulnerability
 - Real options can reduce risk (eg, irrigation and air conditioning)
 - Diversified raw material sources
 - Produce multiple products in negatively correlated markets

Some Issues for Today:

Uncertainty and Government Policy in Small Economy

- Uncertainty about cost of abatement technology: act now moderately or wait for low-cost technology and then move aggressively?
- Aggressively exploit domestic comparative advantage (eg, managing livestock methane emissions), hoping leadership leads to long-term payoff?
- Act now (leader) or wait until picture of costs and benefits is clearer (follower)?
- Focus on managing risk (eg, hardening infrastructure) rather than predicting future climate impacts?
- Develop domestic markets for privately managing risks?
- Where to lead aggressively? Where to follow passively?

Mitigation Policies for Small Open Economy

- Leading vs. Following
 - Leaders can shape global perspectives and institutions—"market-makers"
 - Followers tend to be "price-takers" or "market takers"
- Leaders can take risks to shape globe for own benefit
 - Requires resources and knowledge to make the market
 - Innovations for reducing methane emissions from livestock
 - Institutions for dealing with fishery risks from climate changer
 - Demonstrate that carbon neutrality need not disrupt the economy
 - Demonstrate policies that are adaptable as technology changes
 - Establish leadership position in certain mitigation technologies
 - Establish leadership position in international negotiations
- Followers
 - Accelerated mitigation likely to only generate costs without much benefit
 - May be sector specific follow in some areas; lead in others.

Conclusions

- Uncertainty and Learning Dominate Climate Policy
- Country-level policies should not be uniformly aggressive for small open economy
- Focus investments and actions where they can matter
 - For instance, take leadership role in methods for reducing livestock methane
- In areas where following is the only option
 - Be conscientious and look for opportunities to lead