Models and institutions for adaptive decision-making

Suzi Kerr, Motu Senior Fellow and Victoria University Adjunct Professor

Unlocking our low-emission future
Wellington, 29 November, 2017
Transformational change under deep uncertainty

NZ emission projections and Vivid Economics’ scenarios for 2050

- Gross emissions BAU
- Net emissions BAU – inventory method
- 2013-2020 emissions – target method
- Off Track NZ
- 50x50 target
- Resourceful NZ
- Innovative NZ

NZ emission projections and Vivid Economics’ scenarios for 2050
Navigating toward a Net-Zero-Emissions Future

1. Investing over time under uncertainty delay, flexibility, options, adoption, adjustment costs
2. Modelling to inform decisions under uncertainty
3. Policy under uncertainty
4. Governance for social decision-making
Transformation can take very different forms

Technology breakthrough

Social breakthrough
How should we invest (or encourage investment) under uncertainty?

1. Delay investment (in green and brown technologies) if new information is likely to be revealed soon
 don’t replace existing assets as early as you might
2. Invest in shorter-lived or more adaptable options
3. Focus on different type of investment - learning
Adoption processes... and time

1. Attractiveness varies across people/situations – some will adopt early
2. Costs fall as technology is used – producer learning
3. Epidemic effects – knowledge about the technology spreads / uncertainty falls – user learning

Limited emission reductions – but high learning. Creating an option
Buying a real hydrogen transport option

Option to swap 95% electric 5% hydrogen

100% electric

Decision

Suppose we think with 99% certainty that electric is best for NZ passenger transport

Overconfidence effect?
Convex costs of adjustment – it’s hard to change fast

Create options for faster action later, by beginning with lower cost options now

MAC – 10 years

MAC – 30 years

Emission reductions
Modelling under uncertainty

Crystal ball predictions 30 years out are of limited value

- For long-term modelling focus on understanding technical feasibility, sources of mitigation and timing of changes under current options

What should we be doing now to make sure these paths are possible?

Test performance of different short-term strategies under fundamentally different assumptions about technology, targets and prices
Roles for government (under uncertainty)

Target setting
- International
- Domestic – multi-faceted

ETS settings
Government’s own low-emission investments
 e.g. infrastructure, car fleet, buildings, education

Support learning
 Research and development
 - fundamental research where NZ could be a leader
 - targeted research for adaptation to New Zealand

Support for early adoption
Coordination and facilitation (e.g. regulatory change) of new options implemented by private sector

Engaging with Iwi around options in the Māori economy
Phase out of old technologies – e.g. diesel vehicles
Adaptive emissions pricing

Emissions pricing enables low-emission investments and activities to compete

An ETS can provide useful signals to investors and other actors about the value of mitigation at each point in time

Key decisions are cap and price bands – how fast do we push the NZ economy?
Policy driven uncertainty: Policy stability and commitment

All government face incentives to free-ride internationally and to have inconsistent policy over time

Use financial instruments to give government a greater stake in higher emission prices and provide price protection to some key investors

Use strong governance structures to stabilise policy and support social decision making
Supporting social decision-making

Technical advice

- Clusters of research, modelling and policy development initiatives
- Climate change advisory body on technical and economic feasibility of targets, mitigation options and policies
Ferry?

Flotilla?
Straw man prototype

Climate Change Commission
Independent advice on targets, budgets, strategies and progress

Cross-Sector and Iwi Leaders Groups Social consensus

Political Leaders Group Cross-party consensus

Coordination and Expert Support Scientific, technical, economic, social science

Expert working groups (as needed):

- Accelerating EV uptake
- Biofuels
- Industrial heat
- Low-emission food on Māori land
- Boosting ag efficiency
- ETS reform
- Smart grid
- Innovation for mitigation
- Changing social norms
- Linking to developing countries

Ongoing networks across businesses, researchers/academia, Iwi, NGOs, civil society:

- Research
- Information sharing
- Experimentation & problem solving
- Public awareness
- Collaboration
How do we get to low emissions?

Look back from success

– Generates more ideas, and avoids despair

A multitude of actions and actors

We can’t predict the path

– Balance creativity and analysis
– Create, maintain and enhance options

Need for broad, stable, social process

– Transparent and trusted
– Well-informed
– Wide range of perspectives
Through focused intent
Even small countries can be
Forces for great change