Emissions Trading Game

1st December 2017

Introduction

 This game was developed to give people an understanding of the basic concepts behind emissions trading.

 It demonstrates a simplistic textbook trading system where the economy consists of one electricity retailer and one aluminium smelter.

• It demonstrates how the ETS works when the point of obligation is at the firm level.

Introduction

• Emissions trading is a market mechanism used to control the amount of pollution being emitted.

 Emissions trading schemes are in action worldwide, the largest is the European Union ETS.

• New Zealand's ETS currently includes foresters, industrial emitters, fuels, and energy generators.

Format

 In each scenario, you will need to decide on a production level that will maximise your profit given the regulatory state.

- Three possible regulatory states:
 - No GHG emissions regulation
 - GHG emissions limits
 - GHG emissions trading

Game Setup Basics

 Please form small groups of two or three people.

• Electricity retailer please pair up with an aluminium smelter.

 Please keep the handout information within your own group - don't show the sheet to the other group.

Assumptions

 Your firms are the only sources of pollution in the economy.

 Your goal is to maximise profit by choosing how much to produce, while complying with regulations.

The Production Schedule (1)

- Your handout has a production schedule similar to this one.
- This is an example, whose numbers are different from your schedule.

Coal fired electricity supplied	0	1	2	3	4	5	6	7
Profit from all electricity supplied	-\$10	\$0	\$9	\$12	\$20	\$22	\$24	\$23
Emissions	0	2	3	4	5	6	7	8

The Production Schedule (2)

- If you reduce production from 3 to 2, your profit reduces \$12-\$9=\$3, and your firm's pollution reduces by one.
- If you increase production from 3 to 4, your profit increases \$20-\$12=\$8, and your firm's pollution increases by one.

Coal fired electricity supplied	0	1	2	3	4	5	6	7
Profit from all electricity supply	-\$10	\$0	\$9	\$12	\$20	\$22	\$24	\$23
Emissions	0	2	3	4	5	6	7	8

Comparison

• We will use this table to compare the three regulatory states.

	Total profit	Electricity retailer emissions	Aluminium smelter emissions	Total emissions
No regulation				
Emissions limits				
Emissions trading				

• Decide on your production level under no regulation.

Under no	Coal-fired electricity supplied	Profit	Emissions	
regulation				

• To maximise profit:

Firm type	Production	Profit	Emissions
Electricity retailer	8 units	\$27	7 units
Aluminium smelter	8 units	\$27	11 units
Total		\$54	18 units

Comparison: After Scenario 1

	Total profit	Electricity retailer emissions	Aluminium smelter emissions	Total emissions
No regulation	\$54	7 units	11 units	18 units
Emissions limits				
Emissions trading				

- Decide on your production level with regulations in place to reduce GHG emissions.
- Each firm may emit 6 emissions units.
- Trading is not allowed.

With regulation limiting emissions	Coal-fired electricity supplied	Profit	Emissions
emissions			

• To maximise profit:

Firm type	Production	Profit	Emissions
Electricity Retailer	7 units	\$26	6 units
Aluminium Smelter	3 units	\$14	6 units
Total		\$40	12 units

Comparison: After Scenario 2

	Total profit	Electricity retailer emissions	Aluminium smelter emissions	Total emissions
No regulation	\$54	7 units	11 units	18 units
Emissions limits	\$40	6 units	6 units	12 units
Emissions trading				

- Trading system introduced.
 - Firms are allocated 6 allowances each.

- Please start negotiating with your pair firm.
 - Work out how much you are willing to pay to buy allowances and how much you would need to be paid to sell allowances.

• Note: Be sure to compare your profit before and after the trade before finalising the trade.

Example trade

- If this firm were producing 3 units a year and allocated 3 allowances, she would make \$5 more profit from production by buying an extra allowance. She would be better off if the allowance cost less than \$5.
- In what circumstances would the allowance seller also be better off?

Aluminium produced	0	1	2	3	4	5	6	7
Profit from aluminium production	-\$12	-\$1	\$8	\$14	\$19	\$24	\$28	\$26
Emissions	0	1	2	3	4	5	6	7

• Decide on your production level with an emissions trading system in place.

Under an emissions trading	Coal-fired electricity/ aluminium produced	Allowances bought/sold	Allowance cost/revenue	Profit	Emissions
system					

Discussion

Who managed to undertake a trade?

Who was the buyer/seller?

How many allowances did you trade?

How much did you increase your profit by?

• The optimal trade occurs when electricity retailers sell 2 allowances to aluminium smelters.

Firm type	Production	Profit	Emissions
Electricity retailer	5 units	\$29*	4 units
Aluminium smelter	5 units	\$17*	8 units
Total		\$46	12 units

^{*} Exact profit split depends on individual negotiations.

Comparison: After Scenario 3

	Total profit	Electricity emissions	Aluminium emissions	Total emissions
No regulation	\$54	7 units	11 units	18 units
Emissions limits	\$40	6 units	6 units	12 units
Emissions trading	\$46	4 units	8 units	12 units

Important Lessons

Trading itself does not affect environmental outcomes.

• Limiting emissions can improve environmental outcomes but reduce profitability.

 Trading can reduce the costs of meeting a target.

Extensions

- What are some of the problems of shifting this type of system into the real world?
- How does allowance trading affect firms' inclinations to invest in more environmental friendly technology relative to non-trading regulation?
- Could limiting emissions allow a business to continue as usual, or perhaps become more profitable? Could emissions trading?