

Environmental Trading Game

Introduction

- Emissions trading is a market mechanism used to control the amount of pollution being emitted.
- Emissions trading schemes are in action worldwide, the largest is the European Union ETS.
- New Zealand's ETS currently includes foresters, industrial emitters, fuels, and energy generators.

Introduction – New Zealand's ETS

- New Zealand's ETS currently includes foresters, industrial emitters, fuels, waste, and energy generators.
- Agricultural emitters (farmers) are planned to be included from 2015.
- The point of obligation is currently planned to be at the processor level, but ideally will be at the farmer level.

Introduction

- This game was developed to give people an understanding of the basic concepts behind nutrient trading.
- It demonstrates a simplistic textbook trading system where the economy consists of one sheep/beef farm and one dairy farm.
- It demonstrates how the ETS would work if the point of obligation was at the farm level.

Format

 In each period, you will need to decide on a production level that will maximise your profit given the regulatory state.

- Three possible regulatory states:
 - No nutrient regulation
 - Nutrient limits
 - Nutrient trading

Game Setup Basics

- Please form small groups of two or three people.
- Sheep/beef farm please pair up with a dairy farm.
- Please keep the handout information within your own group - don't show the sheet to the other group.

Assumptions

- Your farms are the only sources of pollution in the economy.
- Your goal is to maximise profit by choosing how much to produce, while complying with regulations.

The Production Schedule (1)

- Your handout has a production schedule similar to this one.
- This is an example, whose numbers are different from your schedule.

Meat produced	0	1	2	3	4	5	6	7
Profit from meat production	-\$10	\$0	\$9	\$12	\$20	\$22	\$24	\$23
Nutrients	0	2	3	4	5	6	7	8

The Production Schedule (2)

- If you reduce production from 3 to 2, your profit reduces \$12-\$9=\$3, and your farm's pollution reduces by one.
- If you increase production from 3 to 4, your profit increases \$20-\$12=\$8, and your farm's pollution increases by one.

Meat produced	0	1	2	3	4	5	6	7
Profit from meat production	-\$10	\$0	\$9	\$12	\$20	\$22	\$24	\$23
Nutrients	0	2	3	4	5	6	7	8

Comparison

• We will use this table to compare the three regulatory states.

	Total profit	Sheep/beef nutrients	Dairy nutrients	Total nutrients
No regulation				
Nutrient limits				
Nutrient trading				

• Decide on your production level under no regulation.

Under no regulation	Meat produced	Profit	Nutrients	

Motu

• To maximise profit:

Farm type	Production	Profit	Nutrients
Sheep/beef	8 units	\$27	7 units
Dairy	8 units	\$27	11 units
Total		\$54	18 units

Comparison: After Scenario 1

	Total profit	Sheep/beef nutrients	Dairy nutrients	Total nutrients
No regulation	\$54	7 units	11 units	18 units
Nutrient limits				
Nutrient trading				

- Decide on your production level with regulations in place to reduce pollution from nutrients.
 - Each farm may emit 6 nutrient units.
- Trading is not allowed.

Motu

With regulation limiting nutrients	Meat produced	Profit	Nutrients

• To maximise profit:

Farm type	Production	Profit	Nutrients
Sheep/beef	7 units	\$26	6 units
Dairy	3 units	\$14	6 units
Total		\$40	12 units

Comparison: After Scenario 2

	Total profit	Sheep/beefDairynutrientsnutrients		Total nutrients
No regulation	\$52	7 units	11 units	18 units
Nutrient limits	\$40	6 units	6 units	12 units
Nutrient trading				

- Trading system introduced.
 - Farms are allocated 6 allowances each.
- Please start negotiating with your pair farm.
 - Work out how much you are willing to pay to buy allowances and how much you would need to be paid to sell allowances.
- Note: Be sure to compare your profit before and after the trade before finalising the trade.

Example trade

- If this farmer were producing 6 units a year and allocated 3 allowances, she would make \$5 more profit from production by buying an extra allowance. She would be better off if the allowance cost less than \$5.
- In what circumstances would the allowance seller also be better off?

Meat produced	0	1	2	3	4	5	6	7
Profit from meat production	-\$12	-\$1	\$8	\$14	\$19	\$24	\$28	\$26
Nutrients	0	1	2	3	4	5	6	7

• Decide on your production level with a nutrient trading system in place.

Under a nutrient trading	Meat/ milk produced	Allowances bought/sold	Allowance cost/revenue	Profit	Nutrients
system					

Motu

Discussion

- Who managed to undertake a trade?
- Who was the buyer/seller?
- How many allowances did you trade?
- How much did you increase your profit by?

Scenario 3 (Again)

- The world starts afresh with the same conditions as before.
- Trade again with another group. Can you increase overall profit?

Under a nutrient trading	Meat/ milk produced	Allowances bought/sold	Allowance cost/revenue	Profit	Nutrients
trading system					

Motu

Discussion

- Who managed to undertake a trade?
- How many groups who didn't made a trade last round achieved a trade this time?
- How many groups didn't trade this time when you did last round? Why?
- How much did you increase your profit by relative to the nutrient limit case?
- Who made more profit than last round?

Motu

• The optimal trade occurs when sheep/beef farmers sell 2 allowances to dairy farmers.

Farm type	Production	Profit	Nutrients
Sheep/beef	5 units	\$29*	4 units
Dairy	5 units	\$17*	8 units
Total		\$46	12 units

* Exact profit split depends on individual negotiations.

Comparison: After Scenario 3

	Total profit	Sheep/beef nutrients	Dairy nutrients	Total nutrients
No regulation	\$54	7 units	11 units	18 units
Nutrient limits	\$40	6 units	6 units	12 units
Nutrient trading	\$46	4 units	8 units	12 units

Important Lessons

- Trading itself does not affect environmental outcomes.
- Limiting nutrients can improve environmental outcomes but reduce profitability.
- Trading can reduce the costs of meeting a target.

Extensions

- What are some of the problems of shifting this type of system into the real world?
- How does allowance trading affect firms' inclinations to invest in more environmental friendly technology relative to non-trading regulation?
- Could limiting nutrients allow a business to continue as usual, or perhaps become more profitable? Could nutrient trading?